Lignani: cosa sono, struttura, sintesi, metabolismo, alimenti

I lignani sono un sottogruppo di polifenoli non flavonoidi.
Sono ampiamente distribuiti nel regno vegetale, essendo presenti in oltre 55 famiglie di piante, dove svolgono funzioni difensive nei confronti di attacchi da parte di funghi e batteri patogeni, e agiscono anche come antiossidanti.
Nell’uomo, studi epidemiologici e fisiologici hanno dimostrato che sono in grado di esercitare effetti positivi nella prevenzione di patologie correlate allo stile di vita, quali il diabete di tipo II e il cancro. Ad esempio, un aumento del loro consumo nella dieta si correla con una riduzione dell’insorgenza di alcuni tipi di tumori estrogeno-dipendenti, come il tumore al seno in donne in postmenopausa.
Inoltre alcuni lignani hanno suscitato anche interesse farmacologico. Esempi o sono:

  • la podofillotossina, ottenuta da piante del genere Podophyllum (famiglia Berberidaceae), una tossina mitotica i cui derivati sono stati utilizzati come chemioterapici;
  • l’arctigenina e la tracheologina, ottenute da piante rampicanti tropicali, che posseggono proprietà antivirali e sono state testate nella ricerca di un farmaco per la cura dell’AIDS.

Indice

Struttura chimica

La loro struttura chimica di base si compone di due unità di fenilpropano legate attraverso un legame carbonio-carbonio che si stabilisce principalmente tra gli atomi centrali delle rispettive catene laterali (posizione 8 o β), legame anche detto β-β’. Meno frequentemente si osservano legami 3-3’, 8-O-4’, o 8-3’; in questi casi i dimeri sono definiti neolignani.
Dunque la loro struttura chimica può essere indicata come (C6-C3)2 e pertanto, al pari degli acidi idrossicinnamici da cui derivano, appartengono alla classe dei fenilpropanoidi.

Unità di fenilpropano dei lignani
Unità di Fenilpropano

Sulla base dello scheletro carbonioso, del pattern di ciclizzazione e del modo in cui l’ossigeno è incorporato nello scheletro della molecola, possono essere suddivisi in 8 sottogruppi: furani, furofurani, dibenzilbutani, dibenzilbutirrolattoni, dibenzocicloottadieni, dibenzilbutirrolattoli, ariltetraline e arilnafatleni. In aggiunta esiste una notevole variabilità riguardo i livelli di ossidazione delle catene laterali propiliche e di entrambe gli anelli aromatici.
In natura non sono presenti in forma libera ma legati ad altre molecole, in genere glicosilati.
Tra i più comuni si ritrovano il secoisolariciresinolo, il più abbondante, ma in buone quantità anche lariciresinolo, pinoresinolo, matairesinolo e 7-idrossimatairesinolo.

Nota: i lignani si possono presentare non solo in forma di dimeri ma anche di oligomeri più complessi, come i dilignani e i sesquilignani.

Biosintesi

Di seguito verrà presa in esame la biosintesi di alcuni tra i lignani più comuni.
La via metabolica ha inizio a partire da 3 dei 4 acidi idrossicinnamici alimentari più comuni: l’acido p-cumarico, l’acido sinapico e l’acido ferulico (l’acido caffeico non è un precursore dei questo sottogruppo di polifenoli). Quindi in ultima analisi derivano dalla fenilalanina e dunque dalla via dell’acido shikimico.

Vie di sintesi dei lignani
Sintesi dei Lignani

Le prime tre reazioni riducono i gruppi carbossilici degli idrossicinnamati a gruppi alcolici, con formazione di alcol detti monolignoli, ossia l’alcol p-cumarilico, l’alcol sinapilico e l’alcol coniferilico, molecole che entrano anche nella biosintesi della lignina.

  • La prima reazione, che porta all’attivazione degli acidi idrossicinnamici, è catalizzata dalla idrossicinnamato:CoA ligasi o 4-cumarato:CoA ligasi (EC 6.2.1.12), con formazione del corrispettivo idrossicinnamato-CoA, e dunque feruloil-CoA, p-cumaril-CoA e sinapil-CoA.
  • Di seguito intervengono le cinnamoil-CoA ossidoreduttasi NADPH-dipendenti o cinnamoil-CoA reduttasi (EC1.2.1.44), che catalizzano la formazione dell’aldeide corrispondente, con liberazione del coenzima A.
  • Nell’ultima delle tre tappe suddette le cinnamil alcol deidrogenasi o monolignolo deidrogenasi NADPH-dipendenti (EC 1.1.1.195) riducono ulteriormente il gruppo aldeidico ad alcol, con formazione di alcol coniferilico, alcol p-cumarilico e alcol sinapilico.

Il passaggio successivo, la dimerizzazione, comporta l’intervento di meccanismi stereoselettivi, o più precisamente enantioselettivi. Infatti la maggior parte dei lignani delle piante esiste in forma di (+)- o (-)-enantiomeri, ossia isomeri dotati di almeno un centro di chiralità, le cui quantità relative possono variare da specie a specie, ma anche all’interno di organi differenti della stessa pianta, a seconda del tipo di reazioni coinvolte.
La dimerizzazione può essere ottenuta attraverso reazioni catalizzate da laccasi (EC 1.10.3.2). Questi enzimi di per se catalizzano la formazione di radicali che dimerizzando creano una miscela racemica, il che dunque non spiega come si formino le miscele racemiche presenti nelle piante. Il meccanismo più accreditato per spiegare la sintesi stereospecifica chiama in causa l’azione degli enzimi suddetti e di una proteina in grado di dirigere la sintesi verso una o l’altra delle due forme enantiomeriche: la proteina dirigente. Lo schema di reazione potrebbe essere il seguente: l’enzima forma i radicali che sono orientati in modo da ottenere l’accoppiamento stereospecifico desiderato dalla proteina dirigente.

Formula di struttura del lignano (-)-matairesinolo
(-)-Matairesinolo

Ad esempio, la pinoresinolo sintetasi, composta da laccasi e proteina dirigente, catalizza la sintesi stereospecifica del (+)-pinoresinolo a partire da due residui di alcol coniferilico. Di seguito il (+)-pinoresinolo, in due reazione stereospecifiche consecutive catalizzate dalla pinoresinolo/lariciresinolo reduttasi NADPH-dipendente (EC 1.23.1.2), viene dapprima ridotto a (+)-lariciresinolo e poi a (-)-secoisolariciresinolo. Il (-)-secoisolariciresinolo, nella reazione catalizzata dalla secoisolariciresinolo deidrogenasi NAD(P)-dipendente (EC 1.1.1.331), è ossidato a (-)-matairesinolo.

Metabolismo intestinale

La loro importanza per la salute dell’uomo deriva in larga misura dalla metabolizzazione che subiscono nel colon da parte del microbiota intestinale, che è parte del più ampio microbiota umano, e che opera deglicosilazioni, para-deidrossilazioni e meta-demetilazioni senza inversione enantiomerica. Le trasformazioni batteriche infatti portano alla formazione di metaboliti dotati di una modesta attività simil-estrogenica, una situazione analoga a quella alcuni isoflavoni, come quelli della soia, di alcuni stilbeni e alcune cumarine. Si parla pertanto di fitoestrogeni. Il prodotto delle reazioni suddette sono i cosiddetti lignani dei mammiferi o enterolignani, come gli agliconi dell’enterodiolo e dell’enterolattone, prodotti rispettivamente a partire dal secoisolariciresinolo e dal matairesinolo.
Osservazioni condotte in animali alimentati con diete ricche di lignani hanno evidenziato la loro presenza in forma non modificata, in basse concentrazioni, nel siero, dimostrando così che possono essere assorbite anche intatti a livello intestinale. Queste molecole esercitano azioni estrogeno-indipendenti, sia in vivo che in vitro, quali l’inibizione dell’angiogenesi, la riduzione del diabete e la soppressione della crescita tumorale.
Nota: con il termine di “fitoestrogeno” si intende una molecola dotata di attività estrogenica o antiandrogenica, almeno in vitro.

Dopo essere stati assorbiti, entrano nel circolo enteroepatico, e a livello epatico possono subire le reazione di fase II ed essere solforati o glucoronidati, per essere infine escreti nelle urine.

Fonti alimentari

La fonte più ricca è rappresentata dai semi di lino, che contengono in prevalenza secoisolariciresinolo, ma in buone quantità anche lariciresinolo, pinoresinolo e matairesinolo (in totale oltre 3,7 mg/100 g di prodotto secco). Si ritrovano anche nei semi di sesamo.

Formula di struttura del lignano (-)-secoisolariciresinolo
(-)-Secoisolariciresinolo

Un’altra fonte importante è rappresentata dai cereali integrali.
Sono presenti anche in altri alimenti, ma in concentrazioni tra le cento e le mille volte inferiori rispetto a quelle osservate nei semi di lino. Esempi sono:

  • le bevande, dove in genere sono più abbondanti nel vino rosso, seguito in ordine decrescente dal tè nero, latte di soia e caffè;
  • la frutta come albicocche, pere, pesche e fragole;
  • le verdure, come le Brassicaceae, l’aglio, gli asparagi e le carote;
  • lenticchie e fagioli.

La loro presenza nei cereali integrali e, in misura minore, nel vino rosso e nella frutta fa si che, almeno nella popolazione che segua una dieta mediterranea, rappresentino la principale fonte di fitoestrogeni.

Bibliografia

  1. Andersen Ø.M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. CRC Press Taylor & Francis Group, 2006
  2. de la Rosa L.A., Alvarez-Parrilla E., Gonzàlez-Aguilar G.A. Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. 1th Edition. Wiley J. & Sons, Inc., Publication, 2010
  3. Heldt H-W. Plant biochemistry – 3th Edition. Elsevier Academic Press, 2005
  4. Manach C., Scalbert A., Morand C., Rémésy C., and Jime´nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727
  5. Satake H, Koyama T., Bahabadi S.E., Matsumoto E., Ono E. and Murata J. Essences in metabolic engineering of lignan biosynthesis. Metabolites 2015;5:270-290. doi:10.3390/metabo5020270
  6. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010;2:1231-1246. doi:10.3390/nu2121231
  7. van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., van Velzen E.J.J, Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., Westerhuis J.A.,and Van de Wiele T. Metabolic fate of polyphenols in the human superorganism. PNAS 2011;108(suppl. 1):4531-4538. doi:10.1073/pnas.1000098107
  8. Wink M. Biochemistry of plant secondary metabolism – 2nd Edition. Annual plant reviews (v. 40), Wiley J. & Sons, Inc., Publication, 2010