Microbiota umano: cos’è, composizione, funzioni

E’ noto da quasi un secolo che gli esseri umani ospitano un ecosistema microbico, definito microbiota umano, straordinariamente denso e diversificato, formato da un numero di virus e cellule molto superiore a quello che compone il corpo umano, e che rappresenta dall’uno al tre per cento del peso corporeo.
I geni che i microrganismi componenti il microbiota umano codificano, che sono circa 1000 volte più numerosi rispetto a quelli del nostro genoma,  formano il microbioma umano.
I microrganismi colonizzano tutte le superfici del corpo esposte all’ambiente. Distinte comunità microbiche sono infatti presenti sulla pelle, nella vagina, nelle vie aeree, e lungo tutto il tubo digerente, a partire dalla bocca, passando attraverso lo stomaco sino a raggiungere le parti terminali dell’intestino.

Indice

Composizione

II microbiota umano è costituito da organismi provenienti da tutti i taxa. Vi si ritrovano infatti batteri, virus, archeobatteri ed eucarioti.

Batteri

I batteri sono presenti con almeno cento trilioni (1014) di cellule, un numero dieci volte maggiore rispetto a quelle che compongono il corpo umano. Si ritrovano per la maggior parte a livello del tratto intestinale, dove, con concentrazioni sino a 1012-1014/grammo di tessuto, formano uno degli habitat più densamente popolati esistenti sulla terra. In questa sede sono particolarmente abbondanti membri dei phyla Firmicutes, ma anche di Bacteroidetes e Actinobacteria.
Nota: le comunità microbiche di una data sede si “somigliano” tra di loro molto di più di quanto le stesse non somiglino a quelle presenti in altri siti dello stesso soggetto; ad esempio, le comunità delle vie aeree superiori sono molto più simili tra individui differenti che non a quelle della pelle o dell’intestino di uno stesso soggetto.

Virus

I virus sono in assoluto i componenti più numerosi essendo presenti con quadrilioni di unità. I genomi di tutti i virus ospitati costituiscono il viroma umano.
In passato i virus e gli eucarioti del microbiota umano sono stati studiati focalizzandoci sui microrganismi patogeni, ma negli ultimi anni l’attenzione si è spostata anche sui numerosissimi membri non patogeni di questi gruppi. E riguardo ai virus, molte delle sequenze geniche trovate sono nuove, il che suggerisce che ci sia ancora molto da conoscere sul viroma umano.
Infine, al pari dei batteri, anche per i virus esiste una notevole variabilità interpersonale.

Archeobatteri

Gli Archeobatteri o archei, nome scientifico Archaea, sono rappresentati in particolare dai microrganismi appartenenti all’ordine dei  Methanobacteriales. Tra questi Methanobrevibacter smithii predomina nell’intestino umano, rappresentando sino al 10% di tutti gli anaerobi.

Eucarioti

Anche gli eucarioti sono presenti, e tra i primi ad essere identificati probabilmente ci sono i parassiti del genere Giardia e Entamoeba. Ma vi è anche una grande abbondanza e diversità di funghi, appartenenti ad esempio a generi quali Candida, Penicillium, Aspergillus, Hemispora, Fusarium, Geotrichum, Cryptococcus, Hormodendrum, Saccharomyces e Blastocystis.

Candida albicans, una componente del microbiota umano:
Candida albicans

Funzione del microbiota umano

Talvolta definito “l’organo dimenticato”, il microbiota umano, e in particolare la sua componente batterica intestinale, svolge numerose ed importanti funzioni che possono portare a benefici nutrizionali, immunologici, e di sviluppo, ma può anche essere causa di malattie per l’ospite.
Di seguito alcuni esempi.

  • E’ coinvolto nello sviluppo del sistema gastrointestinale, come dimostrato da esperimenti condotti su animali germ-free nei quali, ad esempio, lo spessore della mucosa intestinale è più sottile rispetto a quella di animali colonizzati, dunque più facilmente soggetto ad insulti che ne causino la rottura.
  • Concorre all’estrazione dell’energia dai nutrienti, grazie alla sua capacità di fermentare carboidrati per noi indigeribili; inoltre promuove l’assorbimento dei monosaccaridi ed il deposito dell’energia ricavata. Tutto ciò con molta probabilità ha rappresentato una forza evolutiva molto forte che ha giocato a favore del fatto che questi batteri siano diventati nostri simbionti.
  • Concorre al mantenimento del pH acido della pelle e del contenuto del colon.
  • E’ coinvolto nel metabolismo degli xenobiotici e di molti polifenoli.
  • Migliora l’assorbimento di acqua e sali minerali (ferro, calcio e magnesio) nel colon.
  • Aumenta la velocità di transito intestinale, più lenta negli animali germ-free.
  • Ha un ruolo importante nella resistenza alla colonizzazione da parte di microrganismi patogeni, in particolare nella vagina e nell’intestino.
  • E’ coinvolto nella biosintesi di isoprenoidi e vitamine attraverso la via del metileritritolo fosfato.
  • Stimola l’angiogenesi.
  • Interagisce con il sistema immunitario, fornendo segnali per promuovere la maturazione delle cellule immunitarie ed il normale sviluppo delle funzioni immuni. E questo è forse l’effetto più importante derivante dalla simbiosi tra uomo e microrganismi. Esperimenti condotti su animali germ-free hanno infatti evidenziato quanto segue.

I macrofagi, le cellule che hanno il compito di fagocitare i patogeni e poi presentarne gli antigeni al sistema immunitario, sono presenti in scarsissima quantità rispetto all’intestino colonizzato, e se messi in presenza di batteri non riescono a trovarli e quindi a fagocitarli, a differenza dei macrofagi estratti da un intestino colonizzato.
Manca la flogosi cronica aspecifica, una condizione normale del nostro intestino dovuta alla presenza di un tessuto immunitario molto sviluppato e allenato, proprio grazie alla presenza dei batteri nel lume intestinale (e anche di ciò che mangiamo).

  • Cambiamenti nella sua composizione possono contribuire allo sviluppo di obesità e sindrome metabolica.
  • Protegge dallo sviluppo del diabete di tipo I.
  • Molte malattie, sia del bambino che dell’adulto, tra cui il tumore dello stomaco e del colon, i linfomi del tessuto linfoide associato alla mucosa, l’enterocolite necrotizzante, che è un’importante causa di morbilità e mortalità nei prematuri, o le malattie croniche intestinali, sono e altre appaiono essere collegate al microbiota intestinale.

Sembra quindi molto probabile che l’organismo umano rappresenti un superorganismo frutto di tanti anni di evoluzione, composto oltre che dalle proprie cellule e capacità metaboliche e fisiologiche che ne derivano, anche da un altro organo aggiunto, il microbiota.

Commensali e patogeni

Sulla base dei rapporti che stabiliscono con l’ospite, i differenti microrganismi componenti il microbiota umano possono essere quindi suddivisi in due categorie: commensali e patogeni.
I commensali non causano danno all’ospite, con cui anzi instaurano una simbiosi di tipo mutualistico che in genere porta benefici ad entrambe.
I patogeni sono al contrario in grado di causare malattie, ma fortunatamente rappresentano una minima percentuale della nostra flora microbica. Si tratta di microrganismi che stabiliscono una simbiosi con l’ospite traendone beneficio a suo svantaggio.
In genere causano malattia se si verifica:

  • un “cambio di sede”, ossia se si spostano dalla loro normale nicchia, ad esempio l’intestino, ad un’altra impropria, quale la vagina o la vescica, come nel caso del fungo Candida albicans presente normalmente, ma in piccolissima quantità, nell’intestino;
  • un indebolimento delle difese immunitarie dell’ospite, come dopo un trapianto o comunque una terapia immunosoppressiva.

Human Microbiome Project

La componente batterica del microbiota umano è l’oggetto di vari studi tra i quali un progetto molto ampio partito nel 2008 chiamato “Human Microbiome Project”, che ne analizza il microbioma associato a vari habitat del corpo, quali pelle, bocca, naso, vagina ed intestino, in una popolazione sana di 242 adulti. Questi studi hanno evidenziato l’esistenza di una grande variabilità nella composizione del microbiota umano, con i gemelli che condividono meno del 50% dei loro taxa batterici a livello di specie, ed una percentuale anche minore riguardo i virus.
I fattori che modellano la composizione delle comunità microbiche iniziano ad essere compresi. Ad esempio le caratteristiche genetiche dell’ospite hanno un ruolo importante nel creare e plasmare le comunità batteriche presenti, anche se questo non è vero per quelle virali. E studi di metagenomica hanno evidenziato che, nonostante la grande variabilità interpersonale nella composizione delle comunità microbiche, esiste un ampio nucleo condiviso di geni codificante vie del segnale e metaboliche. Sembra cioè che l’assemblaggio e la struttura delle comunità microbiche non avvenga in base alle specie quanto al gruppo più funzionale di geni. E da questo ne deriverebbe che stati di malattia di queste comunità possano essere meglio identificati da distribuzione atipiche di classi di geni funzionali.

Effetti degli antibiotici

l microbiota di un individuo adulto sano è generalmente stabile nel tempo. Tuttavia la sua composizione può essere alterata ad opera di fattori esterni come l’urbanizzazione, i viaggi , le modifiche della dieta, ma soprattutto l’uso di antibiotici a largo spettro.
Gli antibiotici hanno un profondo effetto.

  • Vi è una riduzione a lungo termine nella diversità batterica.
  • I taxa colpiti variano da individuo ad individuo, e posso essere interessati fino ad un terzo di quelli presenti.
  • Alcuni taxa non recuperano anche dopo 6 mesi dal trattamento.
  • Una volta che la comunità batterica si è rimodellata dopo il trattamento con il farmaco, si osserva una ridotta resistenza alla colonizzazione. Ciò permette a microbi estranei e/o patogeni in grado di crescere più dei commensali di causare cambiamenti permanenti nella struttura del microbiota umano, come anche malattie sia acute, ad esempio la pericolosa colite pseudomembranosa, che croniche, come si sospetta per l’asma a seguito dell’uso ed abuso di antibiotici nell’infanzia.
    Inoltre il loro ripetuto uso sembra aumentare la riserva di geni per la resistenza agli antibiotici nel nostro microbioma. A supporto di questa ipotesi in alcune nazioni europee è stata osservata una riduzione nel numero dei patogeni antibiotico-resistenti a seguito di un calo nel numero degli antibiotici prescritti.

Infine non va sottovalutato il fatto che la microflora batterica intestinale è implicata in molte trasformazioni chimiche, per cui una sua alterazione potrebbe avere implicazioni nello sviluppo del cancro come dell’obesità.
Tuttavia, riguardo all’uso degli antibiotici va sottolineato che se abbiamo un’aspettativa di vita molto superiore al passato è anche perché non moriamo più di malattie infettive!

Bibliografia

  1. Burke C., Steinberg P., Rusch D., Kjelleberg S., and Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 2011;108:14288-14293. doi:10.1073/pnas.1101591108
  2. Clemente J.C., Ursell L.K., Wegener Parfrey L., and Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-1270. doi:10.1016/j.cell.2012.01.035
  3. Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., and Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-1359. doi:10.1126/science.1124234
  4. Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., and Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol 2007;5(7):e177. doi:10.1371/journal.pbio.0050177
  5. Turnbaugh P.J., Gordon J.I. The core gut microbiome, energy balance and obesity. J Physiol 2009;587:4153-4158. doi:10.1113/jphysiol.2009.174136
  6. Zhang, T., Breitbart, M., Lee, W., Run, J.-Q., Wei, C., Soh, S., Hibberd, M., Liu, E., Rohwer, F., Ruan, Y. Prevalence of plant viruses in the RNA viral community of human feces. PLoS Biol 2006;4(1):e3. doi:10.1371/journal.pbio.0040003